Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(18): 8142-8154, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38640445

RESUMO

The covalent bonding framework of crystalline single-bonded cubic AsN, recently synthesized under high pressure and high temperature conditions in a laser-heated diamond anvil cell, is here studied by means of density functional theory calculations and compared to single crystal X-ray diffraction data. The precise localization of the nonbonding electron lone pairs and the determination of their distances and orientations are related to the presence of characteristic structural motifs and space regions of the unit cell dominated by repulsive electronic interactions, with the relative orientation of the electron lone pairs playing a key role in minimizing the energy of the structure. We find that the vibrational modes associated with the expression of the lone pairs are strongly localized, an observation that may have implications for the thermal conductivity of the compound. The results indicate the thermodynamic stability of the experimentally observed structure of AsN above ∼17 GPa, provide a detailed insight into the nature of the chemical bonding network underlying the formation of this compound, and open new perspectives to the design and high pressure synthesis of new pnictogen-based advanced materials for potential applications of energetic and technological relevance.

2.
J Chem Phys ; 156(5): 054502, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35135259

RESUMO

It has recently been discovered that, when subjected to moderate amounts of pressure, methane dissolves in water to form binary mixtures of up to 40% molar methane. No significant solubility of water in methane is known. In these mixtures, the water hydrogen-bond network is largely complete and surrounds the methane molecules. The discovery of this dense mixture has once again highlighted the technical difficulties involved in accurately describing and sampling mixing phenomena both computationally and experimentally. Here, we present a systematic and critical study of the methods employed to characterize binary mixtures and their robustness. This study highlights the requirements needed to develop a quantitative understanding, and it proposes new and more accessible measures of miscibility to investigators, particularly for in silico analysis.

3.
J Phys Chem Lett ; 11(12): 4826-4833, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32496780

RESUMO

The molecular structure of dense homogeneous fluid water-methane mixtures has been determined for the first time using high-pressure neutron-scattering techniques at 1.7 and 2.2 GPa. A mixed state with a fully H-bonded water network is revealed. The hydration shell of the methane molecules is, however, revealed to be pressure-dependent with an increase in the water coordination between 1.7 and 2.2 GPa. In parallel, ab initio molecular dynamics simulations have been performed to provide insight into the microscopic mechanisms associated with the phenomenon of mixing. These calculations reproduce the observed phase change from phase separation to mixing with increasing pressure. The calculations also reproduce the experimentally observed structural properties. Unexpectedly, the simulations show mixing is accompanied by a subtle enhancement of the polarization of methane. Our results highlight the key role played by fine electronic effects on miscibility and the need to readjust our fundamental understanding of hydrophobicity to account for these.

4.
Phys Rev Lett ; 124(9): 095701, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202852

RESUMO

The experimental study of the CO_{2} phase diagram is hampered by strong kinetic effects leading to wide regions of metastability and to large uncertainties in the location of some phase boundaries. Here, we determine CO_{2}'s thermodynamic phase boundaries by means of ab initio calculations of the Gibbs free energy of several solid phases of CO_{2} up to 50 Gigapascals. Temperature effects are included in the quasiharmonic approximation. Contrary to previous suggestions, we find that the boundary between molecular forms and the nonmolecular phase V has, indeed, a positive slope and starts at 21.5 GPa at T=0 K. A triple point between phase IV, V, and the liquid phase is found at 35 GPa and 1600 K, indicating a broader region of stability for the nonmolecular form than previously thought. The experimentally determined boundary line between CO_{2}-II and CO_{2}-IV phases is reproduced by our calculations, indicating that kinetic effects do not play a major role in that particular transition. Our results also show that CO_{2}-III is stabilized at high temperature and its stability region coincides with the P-T conditions where phase VII has been reported experimentally; instead, phase II is the most stable molecular phase at low temperatures, extending its region of stability to every P-T condition where phase III is reported experimentally.

5.
Proc Natl Acad Sci U S A ; 116(21): 10204-10205, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31068465
6.
Proc Natl Acad Sci U S A ; 114(49): 12894-12899, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29162690

RESUMO

High-pressure single-crystal X-ray diffraction method with precise control of hydrostatic conditions, typically with helium or neon as the pressure-transmitting medium, has significantly changed our view on what happens with low-density silica phases under pressure. Coesite is a prototype material for pressure-induced amorphization. However, it was found to transform into a high-pressure octahedral (HPO) phase, or coesite-II and coesite-III. Given that the pressure is believed to be hydrostatic in two recent experiments, the different transformation pathways are striking. Based on molecular dynamic simulations with an ab initio parameterized potential, we reproduced all of the above experiments in three transformation pathways, including the one leading to an HPO phase. This octahedral phase has an oxygen hcp sublattice featuring 2 × 2 zigzag octahedral edge-sharing chains, however with some broken points (i.e., point defects). It transforms into α-PbO2 phase when it is relaxed under further compression. We show that the HPO phase forms through a continuous rearrangement of the oxygen sublattice toward hcp arrangement. The high-pressure amorphous phases can be described by an fcc and hcp sublattice mixture.

7.
J Phys Chem Lett ; 7(18): 3579-84, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27560355

RESUMO

Clarifying the structure/dynamics relation of water hydrogen-bond network has been the aim of extensive research over many decades. By joining anvil cell high-pressure technology, femtosecond 2D infrared spectroscopy, and molecular dynamics simulations, we studied, for the first time, the spectral diffusion of the stretching frequency of an HOD impurity in liquid water as a function of pressure. Our experimental and simulation results concordantly demonstrate that the rate of spectral diffusion is almost insensitive to the applied pressure. This behavior is in contrast with the previously reported pressure-induced speed up of the orientational dynamics, which can be rationalized in terms of large angular jumps involving sudden switching between two hydrogen-bonded configurations. The different trend of the spectral diffusion can be, instead, inferred considering that the first solvation shell preserves the tetrahedral structure with pressure and the OD stretching frequency is only slight perturbed.

8.
Proc Natl Acad Sci U S A ; 111(29): 10427-32, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002513

RESUMO

Oxygen, one of the most common and important elements in nature, has an exceedingly well-explored phase diagram under pressure, up to and beyond 100 GPa. At low temperatures, the low-pressure antiferromagnetic phases below 8 GPa where O2 molecules have spin S = 1 are followed by the broad apparently nonmagnetic ε phase from about 8 to 96 GPa. In this phase, which is our focus, molecules group structurally together to form quartets while switching, as believed by most, to spin S = 0. Here we present theoretical results strongly connecting with existing vibrational and optical evidence, showing that this is true only above 20 GPa, whereas the S = 1 molecular state survives up to about 20 GPa. The ε phase thus breaks up into two: a spinless ε0 (20-96 GPa), and another ε1 (8-20 GPa) where the molecules have S = 1 but possess only short-range antiferromagnetic correlations. A local spin liquid-like singlet ground state akin to some earlier proposals, and whose optical signature we identify in existing data, is proposed for this phase. Our proposed phase diagram thus has a first-order phase transition just above 20 GPa, extending at finite temperature and most likely terminating into a crossover with a critical point near 30 GPa and 200 K.

9.
Phys Chem Chem Phys ; 16(7): 3103-7, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24401958

RESUMO

We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.


Assuntos
Elétrons , Gelo , Teoria Quântica , Modelos Moleculares , Conformação Molecular
10.
J Phys Chem Lett ; 5(1): 235-40, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276206

RESUMO

Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

11.
J Phys Chem Lett ; 5(21): 3804-9, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278751

RESUMO

Pressure is extremely efficient to tune intermolecular interactions, allowing the study of the mechanisms regulating, at the molecular level, the structure and dynamics of condensed phases. Among the simplest molecules, water represents in many respects a mystery despite its primary role in ruling most of the biological, physical, and chemical processes occurring in nature. Here we report a careful characterization of the dynamic regime change associated with low-density and high-density forms of liquid water by measuring the line shape of the OD stretching mode of HOD in liquid water along different isotherms as a function of pressure. Remarkably, the high-pressure studies have been here extended down to 240 K, well inside the supercooled regime. Supported by molecular dynamics simulations, a correlation among amorphous and crystalline solids and the two different liquid water forms is attempted to provide a unified picture of the metastable and thermodynamic regimes of water.

12.
J Chem Phys ; 136(11): 114511, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22443781

RESUMO

A novel all-atom, dissociative, and polarizable force field for water is presented. The force field is parameterized based on forces, stresses, and energies obtained form ab initio calculations of liquid water at ambient conditions. The accuracy of the force field is tested by calculating structural and dynamical properties of liquid water and the energetics of small water clusters. The transferability of the force field to dissociated states is studied by considering the solvation of a proton and the ionization of water at extreme conditions of pressure and temperature. In the case of the solvated proton, the force field properly describes the presence of both Eigen and Zundel configurations. In the case of the pressure-induced ice VIII/ice X transition and the temperature-induced transition to a superionic phase, the force field is found to describe accurately the proton symmetrization and the melting of the proton sublattice, respectively.


Assuntos
Teoria Quântica , Água/química , Gelo , Pressão , Temperatura
13.
Proc Natl Acad Sci U S A ; 109(14): 5176-9, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431594

RESUMO

Non molecular CO(2) has been an important subject of study in high pressure physics and chemistry for the past decade opening up a unique area of carbon chemistry. The phase diagram of CO(2) includes several non molecular phases above 30 GPa. Among these, the first discovered was CO(2)-V which appeared silica-like. Theoretical studies suggested that the structure of CO(2)-V is related to that of ß-cristobalite with tetrahedral carbon coordination similar to silicon in SiO(2), but reported experimental structural studies have been controversial. We have investigated CO(2)-V obtained from molecular CO(2) at 40-50 GPa and T > 1500 K using synchrotron X-ray diffraction, optical spectroscopy, and computer simulations. The structure refined by the Rietveld method is a partially collapsed variant of SiO(2) ß-cristobalite, space group I42d, in which the CO(4) tetrahedra are tilted by 38.4° about the c-axis. The existence of CO(4) tetrahedra (average O-C-O angle of 109.5°) is thus confirmed. The results add to the knowledge of carbon chemistry with mineral phases similar to SiO(2) and potential implications for Earth and planetary interiors.

14.
Nat Commun ; 2: 185, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21304514

RESUMO

The interiors of Neptune and Uranus are believed to be primarily composed of a fluid mixture of methane and water. The mixture is subjected to pressures up to several hundred gigapascal, causing the ionization of water. Laboratory and simulation studies so far have focused on the properties of the individual components. Here we show, using first-principle molecular dynamic simulations, that the properties of the mixed fluid are qualitatively different with respect to those of its components at the same conditions. We observe a pressure-induced softening of the methane-water intermolecular repulsion that points to an enhancement of mixing under extreme conditions. Ionized water causes the progressive ionization of methane and the mixture becomes electronically conductive at milder conditions than pure water, indicating that the planetary magnetic field of Uranus and Neptune may originate at shallower depths than currently assumed.


Assuntos
Gelo , Metano/química , Modelos Teóricos , Simulação de Dinâmica Molecular , Netuno , Pressão , Urano , Condutividade Elétrica
15.
J Chem Phys ; 134(7): 074506, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21341858

RESUMO

Melanophlogite, a low-pressure silica polymorph, has been extensively studied at different temperatures and pressures by molecular dynamics simulations. While the high-temperature form is confirmed as cubic, the low-temperature phase is found to be slightly distorted, in agreement with experiments. With increasing pressure, the crystalline character is gradually lost. At 8 GPa, the radial distribution function is consistent with an amorphous state. Like pristine glass, the topology changes, plastic behavior, and permanent densification appear above ∼12 GPa, triggered by Si coordination number changes. We predict that a partial crystalline and amorphous sample can be obtained by recovering the sample from a pressure of ∼12-16 GPa.

16.
J Chem Phys ; 133(20): 204502, 2010 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-21133441

RESUMO

The pressure evolution of the vibrational spectrum of polyethylene was investigated up to 50 GPa along different isotherms by Fourier-transform infrared and Raman spectroscopy and at 0 K by density-functional theory calculations. The infrared data allow for the detection of the orthorhombic Pnam to monoclinic P2(1)∕m phase transition which is characterized by a strong hysteresis both on compression and decompression experiments. However, an upper and lower boundary for the transition pressure are identified. An even more pronounced hysteresis is observed for the higher-pressure transition to the monoclinic A2/m phase. The hysteresis does not allow in this case the determination of a well defined P-T transition line. The ambient structural properties of polyethylene are fully recovered after compression/decompression cycles indicating that the polymer is structurally and chemically stable up to 50 GPa. A phase diagram of polyethylene up to 50 GPa and 650 K is proposed. Analysis of the pressure evolution of the Davydov splittings and of the anomalous intensification with pressure of the IR active wagging mode provides insight about the nature of the intermolecular interactions in crystalline polyethylene.

17.
Phys Chem Chem Phys ; 12(40): 13034-6, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-20820567

RESUMO

Dissociation of chlorofluorocarbons in the atmosphere is a heterogeneous process that takes place mainly on the surface of ice particles. Recently an enhancement of the dissociation rate due to excess electrons has been shown theoretically and correspondingly measured experimentally. Our density functional theory calculations show that CCl(4) dissociates due to an excess electron with an energy gain of 0.8 eV on the ice surface as opposed to in the gas phase. Through the use of ab initio molecular dynamics, an atomistic pathway for this dissociation has been elucidated, this pathway shows the capture of Cl(-) by the ice surface through a partial solvation mechanism, in agreement with recent experimental findings.

18.
J Chem Phys ; 131(12): 124510, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791897

RESUMO

We combine density functional theory (DFT) with molecular dynamics simulations based on an accurate atomistic force field to calculate the pressure derivative of the melting temperature of magnesium oxide at ambient pressure--a quantity for which a serious disagreement between theory and experiment has existed for almost 15 years. We find reasonable agreement with previous DFT results and with a very recent experimental determination of the slope. We pay particular attention to areas of possible weakness in theoretical calculations and conclude that the long-standing discrepancy with experiment could only be explained by a dramatic failure of existing density functionals or by flaws in the original experiment.

19.
J Chem Phys ; 131(1): 014506, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19586109

RESUMO

We calculate by molecular dynamics the optical functions of MgO in the far infrared region 100-1000 cm(-1), for pressures up to 40 GPa and temperatures up to 4000 K. An ab initio parametrized many-body force field is used to generate the trajectories. Infrared spectra are obtained from the time correlation of the polarization, and from Kramers-Kronig relations. The calculated spectra agree well with experimental data at ambient pressure. We find that the infrared absorption of MgO at CO(2) laser frequencies increases substantially with both pressure and temperature and we argue that this may explain the underestimation, with respect to theoretical calculations, of the high-pressure melting temperature of MgO determined in CO(2) laser-heated diamond-anvil cell experiments.

20.
Proc Natl Acad Sci U S A ; 106(15): 6077-81, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332796

RESUMO

Understanding the structural transformations of solid CO(2) from a molecular solid characterized by weak intermolecular bonding to a 3-dimensional network solid at high pressure has challenged researchers for the past decade. We employ the recently developed metadynamics method combined with ab initio calculations to provide fundamental insight into recent experimental reports on carbon dioxide in the 60-80 GPa pressure region. Pressure-induced polymeric phases and their transformation mechanisms are found. Metadynamics simulations starting from the CO(2)-II (P4(2)/mnm) at 60 GPa and 600 K proceed via an intermediate, partially polymerized phase, and finally yield a fully tetrahedral, layered structure (P-4m2). Based on the agreement between calculated and experimental Raman and X-ray patterns, the recently identified phase VI [Iota V, et al. (2007) Sixfold coordinated carbon dioxide VI. Nature Mat 6:34-38], assumed to be disordered stishovite-like, is instead interpreted as the result of an incomplete transformation of the molecular phase into a final layered structure. In addition, an alpha-cristobalite-like structure (P4(1)2(1)2), is predicted to be formed from CO(2)-III (Cmca) via an intermediate Pbca structure at 80 GPa and low temperatures (<300 K). Defects in the crystals are frequently observed in the calculations at 300 K whereas at 500 to 700 K, CO(2)-III transforms to an amorphous form, consistent with experiment [Santoro M, et al. (2006) Amorphous silica-like carbon dioxide. Nature 441:857-860], but the simulation yields additional structural details for this disordered solid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...